

Dipl.-Ing. Simon Köhler Professur für Fluid-Mechatronische Systemtechnik | TU Dresden

Das Verbundforschungsprojekt "Bauen 4.0"

Überblick, Architekturaspekte für die digitale Baustelle und Diskussion ausgewählter Maschinen-Services

Mobile Machines online // 29. April 2021

1. Überblick Bauen 4.0

- 1. Überblick Bauen 4.0
- 2. Kommunikationsarchitekturen für die digitale Baustelle
- 3. Integration digitaler Maschinen- und Systemabbilder
- 4. Ausblick

1. Überblick Bauen 4.0

Projektpartner und organisatorischer Rahmen

1. Überblick Bauen 4.0

2. Kommunikationsarchitekturen

Integration digitaler Abbilder

4. Ausblick

Zahlen Daten Fakten:

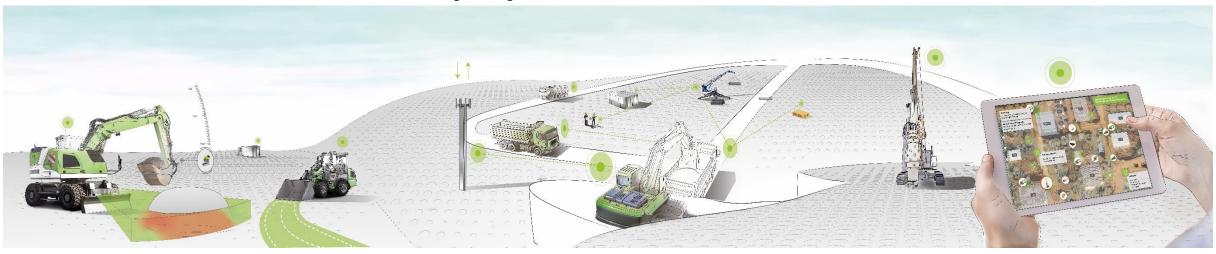
- Förderung BMBF Projektträger Karlsruhe Förderprogramm INKOWE
- Laufzeit 01.07.2019 31.07.2022
- 20 Industriepartner, 2 Universitäten
- Begleitet durch diverse Verbände
- Gesamtkosten 9 Mio. € / 4,8 Mio. € Förderung

HYDRIVE ENGINEERING rexroth

Folie 4

Wacker Neuson

Group


Die Themenschwerpunkte

1. Überblick Bauen 4.0

2. Kommunikationsarchitekturen

3. Integration digitaler Abbilder

4. Ausblick

Automatisierbare, vernetzte Arbeitsmaschinen

- Bedienerassistenz
- Automatisierung
- Fernhantierung
- Vertikale Datenintegration

5G Maschinen- und Baustellenvernetzung

- Cloudlösungen
- Verteilte Intelligenz
- Sicherer
 (reliable&secure)
 Datenaustausch

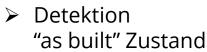
Prozesse & Lösungen für die digitale Baustelle

- Tracking & Tracing
- Simulation von Bauprozessen
- BIM zu BIMsite
- Fahrerleitsystem 4.0

Nachhaltige Demonstrations- & Entwicklungsplattform für Industrie 4.0 Lösungen im Baustellenbetrieb: Demonstrationsszenario 2022

Demoapplikationen

Automatisierbare, vernetzte Arbeitsmaschinen

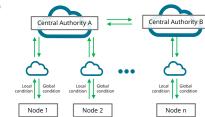

5G Maschinen- und Baustellenvernetzung

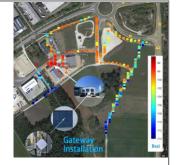
Prozesse & Lösungen für die digitale Baustelle

Automat. Erdbewegung

Automat. Werkzeugwechsel

Umfelderkennung


Automat.
Arbeiten


Multi-Connectivity modul: WiFi, 5G,
 4G, BLE...

Construction Site Networks: WiFi, 5G Campus

Verteilte Cloud Services

Tracking & Tracing von Materialien via LPWAN

 Prozessoptimierungen und Baufortschrittsvorhersage anhand Simulation und Machinendaten (z.B. ISO 15143-3 Daten via OPC UA)

AR-gestützte

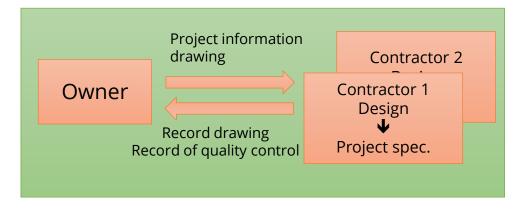
 Fahrerassistenz:
 Visualisierung via
 HoloLens

Vertical Integration

2. Kommunikationsarchitekturen

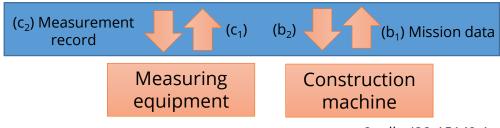
Worksite data exchange nach ISO 15143-1

1. Überblick Bauen 4.0


2. Kommunikationsarchitekturen

3. Integration digitaler Abbilder

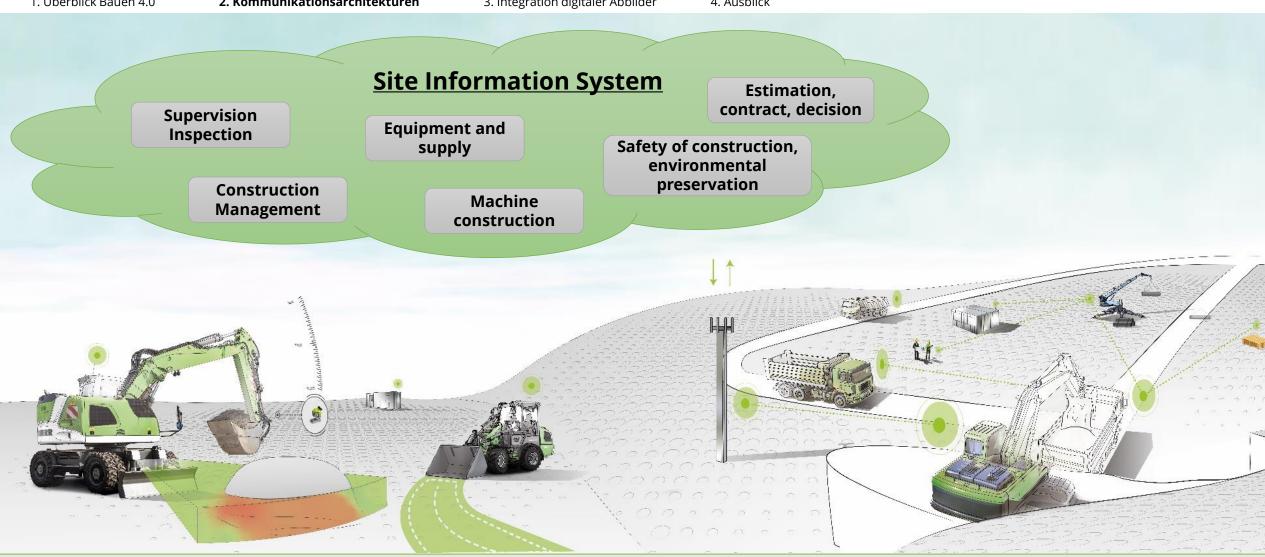
4. Ausblick


Ziele der Norm

- 1. Datenaustausch zwischen Bauunternehmen und site information system (MES) während der Bauausführung
 - a. Informationsfluss von Bauunternehmen zum site information system (allg. Projektdaten, Designdaten, usw.)
 - b. Informationsfluss von site information system zum Bauunternehmen (Maschinendaten, Baufortschritt, ...)
- Datenaustausch zwischen site information system und Arbeitsmaschinen:
 - a. Informationsfluss von site information system zu mobile Arbeitsmaschinen, (Auftragsdaten)
 - b. Informationsfluss von den Arbeitsmaschinen zum site information system (Maschinendaten zu Bauprozessen oder Maschinenzustand)
- Datenaustausch zwischen site information system und externer Vermessungstechnik:
 - a. Informationsfluss von site information system zu externer Vermessungstechnik (trigger data)
 - b. Informationsfluss von externer Vermessungstechnik zum site information system (Vermessungsdaten)

Site information System

Quelle: ISO 15143-1

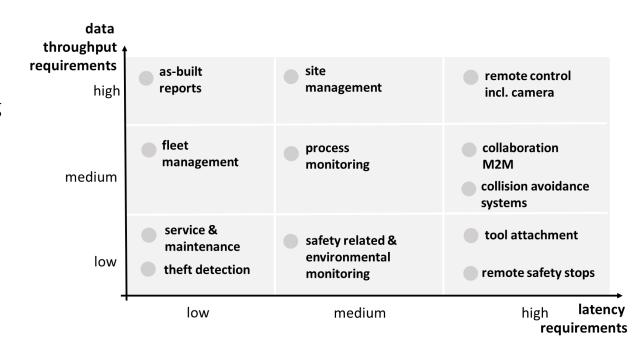

Worksite data exchange nach ISO 15143-1

1. Überblick Bauen 4.0

2. Kommunikationsarchitekturen

3. Integration digitaler Abbilder

4. Ausblick



Anforderungen an den Datenaustausch – Bauen 4.0

- 1. Überblick Bauen 4.0
- 2. Kommunikationsarchitekturen
- 3. Integration digitaler Abbilder
- 4. Ausblick

- Begleitende Prozesssimulation w\u00e4hrend der Bauausf\u00fchrung am Bohrger\u00e4t
- Modellbasierter, automatisierter Erdbau und Erfassung Ist-Zustand/Oberflächenmodell durch Bagger
- Auftragsübermittlung und Automatisierung der Kranbewegung am Ladekran
- Automatisiertes Fahren mit Radlader
- Digitaler Zwilling des Baggers zur Anomalieerkennung anhand von Betriebsdaten
- Flexible Baustellennetze (5G, Campusnetze, Mesh-network, MEC)
- Tracking und Tracing von Anbaugeräten, Material, Schüttgütern, Beistellgeräten

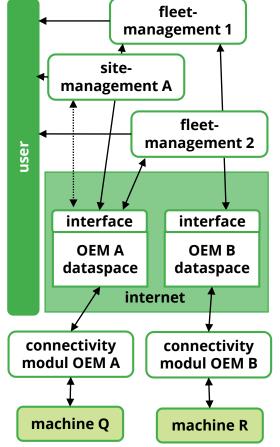
Div. Anforderungen an Latenz und Datenrate

Lösungsansätze Vernetzung

1. Überblick Bauen 4.0

2. Kommunikationsarchitekturen

3. Integration digitaler Abbilder


4. Ausblick

Datenaustausch auf der Baustelle

- aktuell keine Norm f

 ür Kommunikation auf Baustellen
- ISO 15143-1 beschreibt keine Kommunikationsstandards bzw. –protokolle
- Kommunikation OEM Cloud zu FMS standardisiert in ISO 15143-3
 - XML Dateien via HTTPS-GET Request an bestimmte URL der OEM Cloud
- prinzipiell drei Varianten denkbar
 - proprietary data space approach
 - common data space approach
 - middleware approach

proprietary data space approach

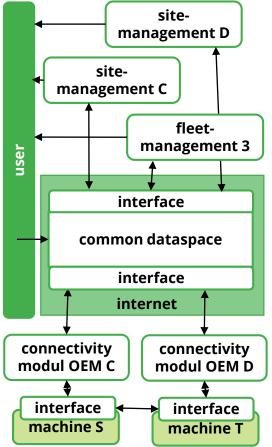
Quelle: The Role of Construction Machinery on an Automated and Connected Construction Site, V. Waurich, 4th International VDI Conference Smart Construction Equipment, 2020

Lösungsansätze Vernetzung

1. Überblick Bauen 4.0

2. Kommunikationsarchitekturen

3. Integration digitaler Abbilder


4. Ausblick

Datenaustausch auf der Baustelle

- aktuell keine Norm f

 ür Kommunikation auf Baustellen
- ISO 15143-1 beschreibt keine Kommunikationsstandards bzw. –protokolle
- Kommunikation OEM Cloud zu FMS standardisiert in ISO 15143-3
 - XML Dateien via HTTPS-GET Request an bestimmte URL der OEM Cloud
- prinzipiell drei Varianten denkbar
 - proprietary data space approach
 - common data space approach
 - middleware approach

common data space approach

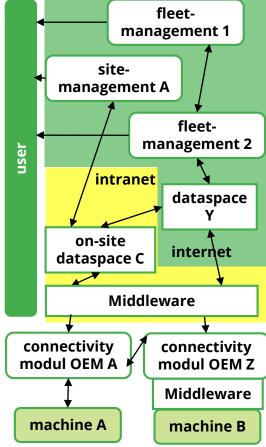
Quelle: The Role of Construction Machinery on an Automated and Connected Construction Site, V. Waurich, 4th International VDI Conference Smart Construction Equipment, 2020

Lösungsansätze Vernetzung

1. Überblick Bauen 4.0

2. Kommunikationsarchitekturen

3. Integration digitaler Abbilder

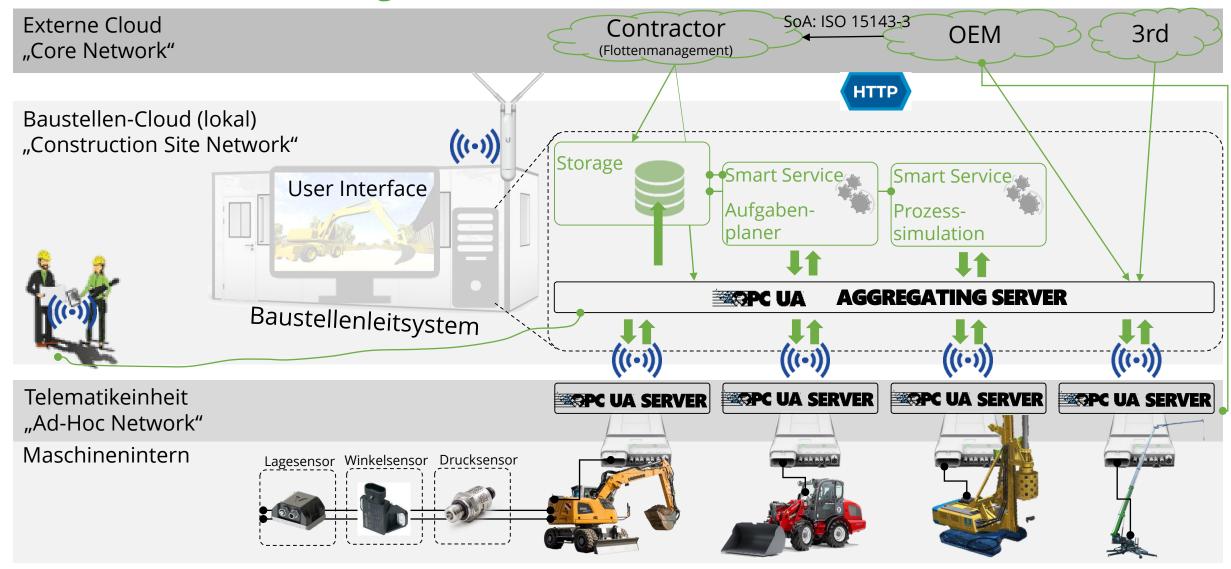

4. Ausblick

Datenaustausch auf der Baustelle

- aktuell keine Norm f

 ür Kommunikation auf Baustellen
- ISO 15143-1 beschreibt keine Kommunikationsstandards bzw. –protokolle
- Kommunikation OEM Cloud zu FMS standardisiert in ISO 15143-3
 - XML Dateien via HTTPS-GET Request an bestimmte URL der OEM Cloud
- prinzipiell drei Varianten denkbar
 - proprietary data space approach
 - common data space approach
 - middleware approach

middleware approach



Quelle: The Role of Construction Machinery on an Automated and Connected Construction Site, V. Waurich, 4th International VDI Conference Smart Construction Equipment, 2020

Gesamtarchitektur "Digitale Baustelle"

Eignung OPC UA für unterschiedliche Vernetzungsebenen

1. Überblick Bauen 4.0


2. Kommunikationsarchitekturen

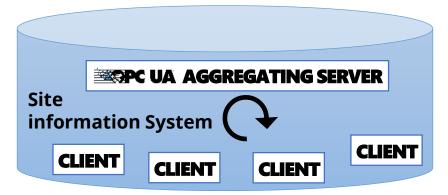
3. Integration digitaler Abbilder

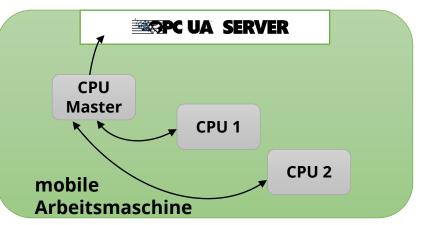
4. Ausblick

- Use Cases lassen sich in 4 Kategorien mit unterschiedlichen Leistungsanforderungen gruppieren
 - Enterprise
 - HMI
 - C2C bzw. M2M
 - Field Level
- Kommunikationsvarianten mit OPC UA
 - Server/Client vs. Pub/Sub
 - Broker vs. Brokerless
 - AMQP vs. MQTT vs. UA UDP vs. UA Ethernet
 - JSON vs. UADP
- Fazit:
 - Server/Client für vertikale Vernetzung und HMI geeignet (1h – 100ms)
 - Horizontale Vernetzung benötigt Pub/Sub (250µs – 1ms)

Requirments	Enterprise	нмі	C2C	Field level
Latency / Cycle Time	1 s – 1 h	100 ms	1 ms	250 µs – 1 ms
Time Sync Accuracy	-	-	<1 ms	<1 µs
Decoupled Communication	(Time), Synchronization	Synchronization	Synchronization	Synchronization
Subscriber	>500	2	~100	~500
Hardware	PC	PC / Mobile Devices	High Level Embedded Devices	Embedded Devices
Configuration	Online	Online	Mostly offline	Mostly offline
QoS	Best effort traffic with reliable transmission	Best effort traffic with reliable transmission	Prioritized traffic with unreliable transmission	Scheduled traffic with unreliable transmission

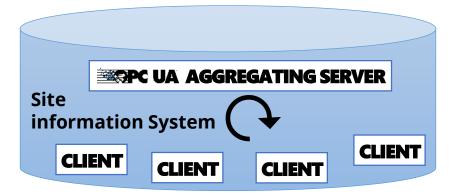
Quelle: An evaluation of the applicability of OPC UA Publish Subscribe on factory automation use cases, A. Eckhardt et al.

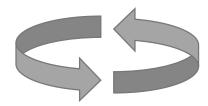


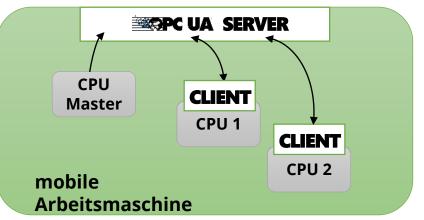

3. Integration digitaler Abbilder

- 1. Überblick Bauen 4.0
- 2. Kommunikationsarchitekturen
- 3. Integration digitaler Abbilder
- 4. Ausblick

- Zielführende Integration abhängig von Use Case
- Klassische Kommunikationsanforderungen:
 - Latenz/Zykluszeit
 - ent-/gekoppelte Kommunikation
 - bi- oder direktional
 - Synchronisationsgenaugkeit
- Abhängigkeit Datenendpunkt bzw. Anwender
 - Bediener/Fahrer
 - Verschiedene Services/Tools im Site System
- mögliche Einbindungsvarianten
 - proprietäre Kommunikation/internes Mapping
 - Verbindung via UA Client
 - Verbindung via UA Server/Client (Maschine)
 - Verbindung via UA Server/Client (ext. Cloud)
 - Verbindung via UA Server/Client (Site System)

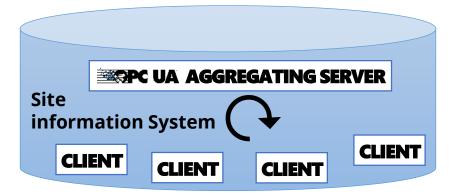


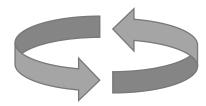




- 1. Überblick Bauen 4.0
- 2. Kommunikationsarchitekturen
- 3. Integration digitaler Abbilder
- 4. Ausblick

- Zielführende Integration abhängig von Use Case
- Klassische Kommunikationsanforderungen:
 - Latenz/Zykluszeit
 - ent-/gekoppelte Kommunikation
 - bi- oder direktional
 - Synchronisationsgenaugkeit
- Abhängigkeit Datenendpunkt bzw. Anwender
 - Bediener/Fahrer
 - Verschiedene Services/Tools im Site System
- mögliche Einbindungsvarianten
 - proprietäre Kommunikation/internes Mapping
 - Verbindung via UA Client
 - Verbindung via UA Server/Client (Maschine)
 - Verbindung via UA Server/Client (ext. Cloud)
 - Verbindung via UA Server/Client (Site System)

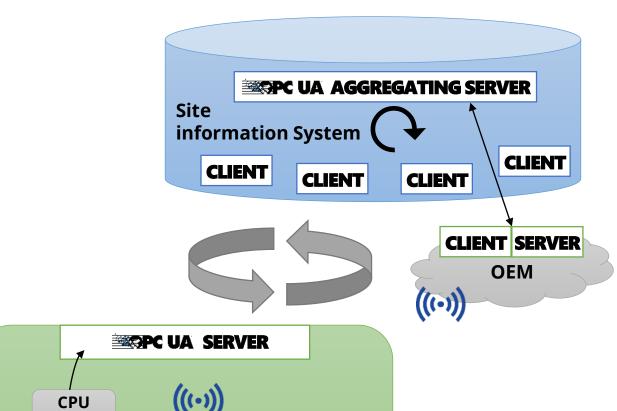




- 1. Überblick Bauen 4.0
- 2. Kommunikationsarchitekturen
- 3. Integration digitaler Abbilder
- 4. Ausblick

- Zielführende Integration abhängig von Use Case
- Klassische Kommunikationsanforderungen:
 - Latenz/Zykluszeit
 - ent-/gekoppelte Kommunikation
 - bi- oder direktional
 - Synchronisationsgenaugkeit
- Abhängigkeit Datenendpunkt bzw. Anwender
 - Bediener/Fahrer
 - Verschiedene Services/Tools im Site System
- mögliche Einbindungsvarianten
 - proprietäre Kommunikation/internes Mapping
 - Verbindung via UA Client
 - Verbindung via UA Server/Client (Maschine)
 - Verbindung via UA Server/Client (ext. Cloud)
 - Verbindung via UA Server/Client (Site System)

- 1. Überblick Bauen 4.0
- 2. Kommunikationsarchitekturen
- 3. Integration digitaler Abbilder
- 4. Ausblick

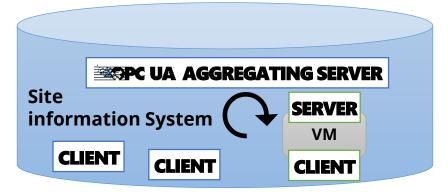

Master

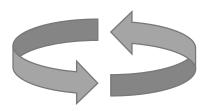
Arbeitsmaschine

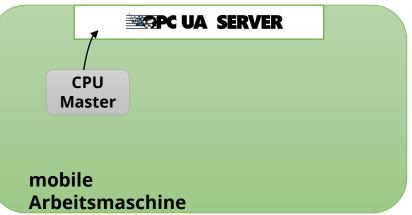
mobile

CPU₁

- Zielführende Integration abhängig von Use Case
- Klassische Kommunikationsanforderungen:
 - Latenz/Zykluszeit
 - ent-/gekoppelte Kommunikation
 - bi- oder direktional
 - Synchronisationsgenaugkeit
- Abhängigkeit Datenendpunkt bzw. Anwender
 - Bediener/Fahrer
 - Verschiedene Services/Tools im Site System
- mögliche Einbindungsvarianten
 - proprietäre Kommunikation/internes Mapping
 - Verbindung via UA Client
 - Verbindung via UA Server/Client (Maschine)
 - Verbindung via UA Server/Client (ext. Cloud)
 - Verbindung via UA Server/Client (Site System)


CPU₂



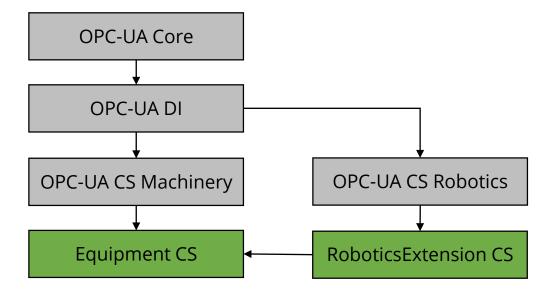


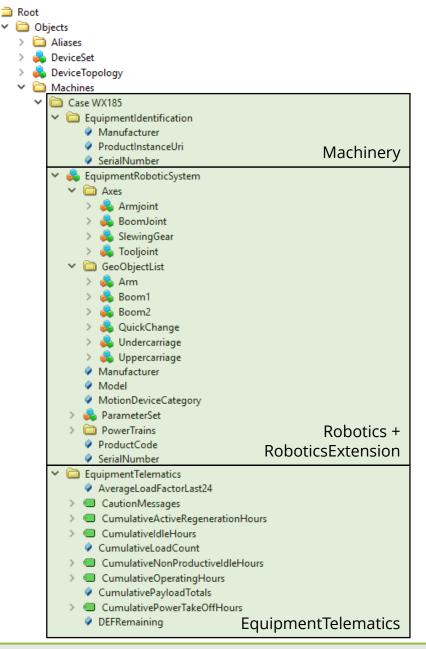
- 1. Überblick Bauen 4.0
- 2. Kommunikationsarchitekturen
- 3. Integration digitaler Abbilder
- 4. Ausblick

- Zielführende Integration abhängig von Use Case
- Klassische Kommunikationsanforderungen:
 - Latenz/Zykluszeit
 - ent-/gekoppelte Kommunikation
 - bi- oder direktional
 - Synchronisationsgenaugkeit
- Abhängigkeit Datenendpunkt bzw. Anwender
 - Bediener/Fahrer
 - Verschiedene Services/Tools im Site System
- mögliche Einbindungsvarianten
 - proprietäre Kommunikation/internes Mapping
 - Verbindung via UA Client
 - Verbindung via UA Server/Client (Maschine)
 - Verbindung via UA Server/Client (ext. Cloud)
 - Verbindung via UA Server/Client (Site System)

Use Case: Remote Diagnose

1. Überblick Bauen 4.0


2. Kommunikationsarchitekturen


3. Integration digitaler Abbilder

4. Ausblick

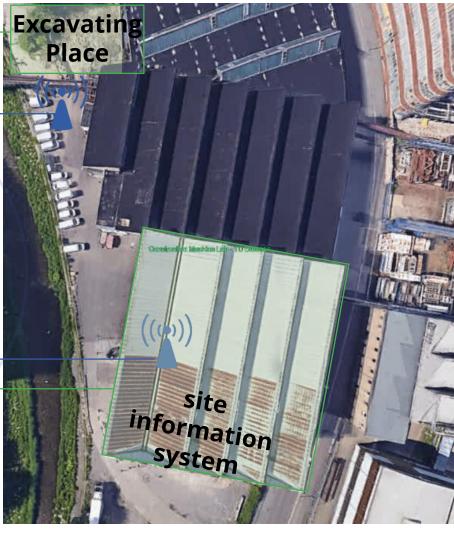
Enthaltene Funktionalitäten:

- Finden einer Maschine auf dem Server und eindeutige Identifikation der Maschine (VDMA 40001-1 OPC UA for Machinery)
- Beschreibung der Maschine als Robotics:MotionDeviceType (VDMA 400101-1 OPC UA Companion Specification Robotics)
- Erweiterung zur vollständigen kinematischen Beschreibung für Vorwärtsrechnung
- EquipmentTelematics umfasst alle Daten der ISO 15143-3

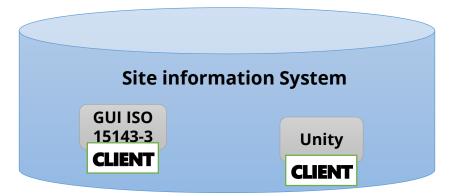
Use Case: Remote Diagnose

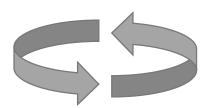
1. Überblick Bauen 4.0

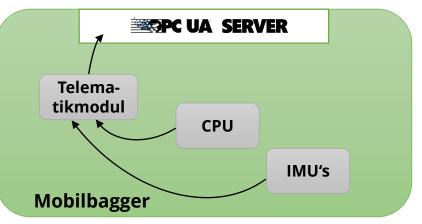
2. Kommunikationsarchitekturen


3. Integration digitaler Abbilder

4. Ausblick




BEAUEN

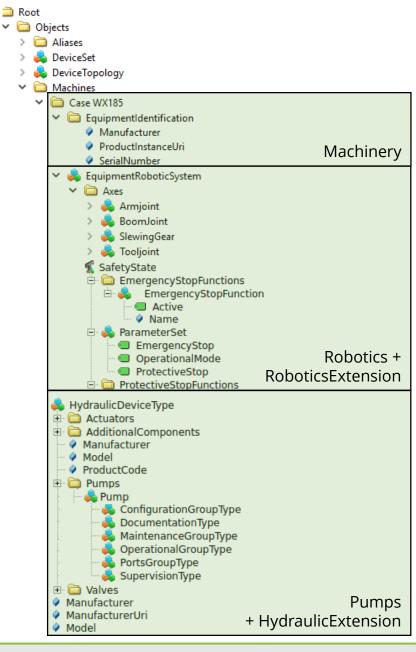

Use Case: Remote Diagnose

- 1. Überblick Bauen 4.0
- 2. Kommunikationsarchitekturen
- 3. Integration digitaler Abbilder
- 4. Ausblick

- Zielführende Integration abhängig von Use Case
- Klassische Kommunikationsanforderungen:
 - Latenz/Zykluszeit
 - ent-/gekoppelte Kommunikation
 - bi- oder direktional
 - Synchronisationsgenauigkeit
- Abhängigkeit Datenendpunkt bzw. Anwender
 - Bediener/Fahrer
 - Verschiedene Services/Tools im Site System
- mögliche Einbindungsvarianten
 - proprietäre Kommunikation/internes Mapping
 - Verbindung via UA Client
 - Verbindung via UA Server/Client (Maschine)
 - Verbindung via UA Server/Client (ext. Cloud)
 - Verbindung via UA Server/Client (Site System)

Weitere Use Cases

1. Überblick Bauen 4.0


2. Kommunikationsarchitekturen

3. Integration digitaler Abbilder

4. Ausblick

Laufende Erweiterungen:

- Implementierung SafetyStates für die Arbeitsausrüstung auf Basis des Robotics:SafetyStateType (VDMA 400101-1 OPC UA Companion Specification Robotics)
- Beschreibung der Maschine als HydraulicDeviceSystemType in Anlehnung an Robotics:MotionDeviceType (VDMA 400101-1 OPC UA Companion Specification Robotics)
- Hydraulische Komponentenmodelle in Anlehnung an PumpType (Draft VDMA 40223 Companion for pumps and vacuum pumps)
- Implementierung digitaler Abbilder (Hydrauliküberwachung) auf CPU (internes Mapping)
- Use Cases:
 - Anbindung Flottenmanagement bzw. Maintenance & Service
 - Visualisierung Fehlerzustand für Bediener

Validierung/Verifizierung via Software-in-the-Loop

1. Überblick Bauen 4.0

2. Kommunikationsarchitekturen

3. Integration digitaler Abbilder

4. Ausblick

02 13:30:09.538 (UTC+0100)

Embedded Server

| 1-02-02 13:29:46.344 (UTC+0100)| info/session | SecureChannel 0 | Session g=00000001-0000 | Ilue is empty. But this is only allowed for BaseDataType. Create a matching default value. | IICATION: Added EngineeringUnits-Property to 1:54619 | SecureChannel 0 | Session g=00000001-0000 | Info/session | SecureChannel 0 | Session g=00000001-0000 | Info/session | SecureChannel 0 | Session g=00000001-0000 | Ilue is empty. But this is only allowed for BaseDataType. Create a matching default value. | IICATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 0 | Session g=00000001-0000 | ILCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 0 | Session g=00000001-0000 | ILCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 0 | Session g=00000001-0000 | ILCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 0 | Session g=00000001-0000 | ILCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 0 | Session g=00000001-0000 | ILCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 0 | Session g=00000001-0000 | ILCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 0 | Session g=00000001-0000 | ILCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 0 | Session g=00000001-0000 | ILCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 0 | Session g=00000001-0000 | ILCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 0 | Session g=00000001-0000 | Info/session | SecureChannel 0 | Session g=00000001-0000 | Info/session | SecureChannel 0 | Session g=00000001-0000 | Info/session | SecureChannel 0 | SecureChannel 1 | Unknown reque | IlCATION: Added EngineeringUnits-Property to 1:54615 | IlCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 1 | IlCATION: Added EngineeringUnits-Property to 1:54615 | IlCATION: Added EngineeringUnits-Property to 1:54615 | SecureChannel 1 | IlCATION: Added EngineeringUnits-Property to 1:54615 | IlCATION: Added EngineeringUnits-Property to 1:54615 | SecureCh

4. Ausblick

1. Überblick Bauen 4.0

2. Kommunikationsarchitekturen

3. Integration digitaler Abbilder

4. Ausblick

2021

2022

- Skalierung Lösungskonzept:Anwendung auf unt. Maschinen
- ➤ Aufbau eines Local Site Server
- Integration des Bauen 4.0 Connectivity Moduls
- Pabrikstraße 48, Dresden

- ➤ Wechsel von WiFi zu 5G Campus
- Autonomer Fahrbetrieb mit einem Radlader
- Remote Control Arbeitsplatz für mobile Arbeitsmaschinen
- Industriegebiet Zeißig, Hoyerswerda

- Vorbereitung Demonstrationsszenario
- Aufbau von Infrastruktur und unternehmerischen Organisationsformen für die Benutzung nach Projektende

Gewerbegebiet Klingewalde, Görlitz

GEFÖRDERT VOM

BETREUT VOM

Kontakt

Dipl.-Ing. Simon Köhler

Professur für Fluid-Mechatronische Systemtechnik

: +49 351 - 463 34558

